One Watt High Current
 Transistors
 PNP Silicon

MPSW51 MPSW51A*

MAXIMUM RATINGS

Rating		Symbol	Value	Unit
Collector-Emitter Voltage	MPSW51 MPSW51A	$\mathrm{V}_{\text {CEO }}$	$\begin{aligned} & -30 \\ & -40 \end{aligned}$	Vdc
Collector-Base Voltage	MPSW51 MPSW51A	$\mathrm{V}_{\text {CBO }}$	$\begin{aligned} & -40 \\ & -50 \end{aligned}$	Vdc
Emitter-Base Voltage		$\mathrm{V}_{\text {Ebo }}$	-5.0	Vdc
Collector Current - Continuous		I_{C}	-1000	mAdc
Total Device Dissipation @ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$		P_{D}	$\begin{aligned} & 1.0 \\ & 8.0 \end{aligned}$	Watts $\mathrm{mW} /{ }^{\circ} \mathrm{C}$
Total Device Dissipation @ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$		P_{D}	$\begin{aligned} & \hline 2.5 \\ & 20 \end{aligned}$	Watts $\mathrm{mW} /{ }^{\circ} \mathrm{C}$
Operating and Storage Junction Temperature Range		$\mathrm{T}_{\mathrm{J},} \mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Ambient	$\mathrm{R}_{\text {日JA }}$	125	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Resistance, Junction to Case	$\mathrm{R}_{\text {日JC }}$	50	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit

OFF CHARACTERISTICS

Collector-Emitter Breakdown Voltage ${ }^{(1)}$ $\left(I_{C}=-1.0 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=0\right)$	MPSW51 MPSW51A	$\mathrm{V}_{\text {(BR)CEO }}$	$\begin{aligned} & -30 \\ & -40 \end{aligned}$	-	Vdc
Collector-Base Breakdown Voltage $\left(I_{C}=-100 \mu A d c, I_{E}=0\right)$	MPSW51 MPSW51A	$\mathrm{V}_{\text {(BR) }{ }^{\text {CBO }}}$	$\begin{aligned} & -40 \\ & -50 \end{aligned}$	-	Vdc
Emitter-Base Breakdown Voltage $\left(I_{E}=-100 \mu \mathrm{Adc}, \mathrm{I}_{\mathrm{C}}=0\right)$		$\mathrm{V}_{(\mathrm{BR}) \text { EBO }}$	-5.0	-	Vdc
$\begin{aligned} & \text { Collector Cutoff Current } \\ & \qquad \begin{array}{l} \left(\mathrm{V}_{\mathrm{CB}}=-30 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0\right) \\ \left(\mathrm{V}_{\mathrm{CB}}=-40 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0\right) \end{array} \end{aligned}$	MPSW51 MPSW51A	$\mathrm{I}_{\mathrm{CBO}}$	-	$\begin{aligned} & -0.1 \\ & -0.1 \end{aligned}$	$\mu \mathrm{Adc}$
Emitter Cutoff Current $\left(\mathrm{V}_{\mathrm{EB}}=-3.0 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=0\right)$		$\mathrm{l}_{\text {ebo }}$	-	-0.1	$\mu \mathrm{Adc}$

1. Pulse Test: Pulse Width $\leq 300 \mu$ s, Duty Cycle $\leq 2.0 \%$.

MPSW51 MPSW51A

ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted) (Continued)

Characteristic	Symbol	Min	Max	Unit
ON CHARACTERISTICS				
DC Current Gain $\begin{aligned} & \left(\mathrm{I}_{\mathrm{C}}=-10 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{CE}}=-1.0 \mathrm{Vdc}\right) \\ & \left(\mathrm{I}_{\mathrm{C}}=-100 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{CE}}=-1.0 \mathrm{Vdc}\right) \\ & \left(\mathrm{I}_{\mathrm{C}}=-1000 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{CE}}=-1.0 \mathrm{Vdc}\right) \end{aligned}$	$\mathrm{h}_{\text {FE }}$	$\begin{aligned} & 55 \\ & 60 \\ & 50 \end{aligned}$	—	-
Collector-Emitter Saturation Voltage ($\mathrm{I}_{\mathrm{C}}=-1000 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=-100 \mathrm{mAdc}$)	$\mathrm{V}_{\mathrm{CE} \text { (sat) }}$	-	-0.7	Vdc
Base-Emitter On Voltage $\left(\mathrm{I}_{\mathrm{C}}=-1000 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{CE}}=-1.0 \mathrm{Vdc}\right)$	$\mathrm{V}_{\mathrm{BE} \text { (on) }}$	-	-1.2	Vdc

SMALL-SIGNAL CHARACTERISTICS

Current-Gain - Bandwidth Product $\left(\mathrm{I}_{\mathrm{C}}=-50\right.$ mAdc, $\left.\mathrm{V}_{\mathrm{CE}}=-10 \mathrm{Vdc}, \mathrm{f}=20 \mathrm{MHz}\right)$	f_{T}	50	-	MHz
Output Capacitance $\left(\mathrm{V}_{\mathrm{CB}}=-10 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	$\mathrm{C}_{\text {obo }}$	-	30	pF

Figure 1. DC Current Gain

Figure 3. "ON" Voltages

Figure 4. Temperature Coefficient

Figure 5. Current Gain - Bandwidth Product

Figure 6. Capacitance

Figure 7. Active Region - Safe Operating Area

MPSW51 MPSW51A

PACKAGE DIMENSIONS

TO-92 (TO-226)
CASE 29-10
ISSUE AL

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. CONTOUR OF PACKAGE BEYOND DIMENSION R IS UNCONTROLLED.
4. DIMENSION F APPLIES BETWEEN P AND L. DIMENSIONS D AND J APPLY BETWEEN L AND K MIMIMUM. LEAD DIMENSION IS UNCONTROLLED MIMIMUM. LEAD DIMENSION IS UNCONTRO
IN P AND BEYOND DIMENSION K MINIMUM.

	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
A	0.175	0.205	4.44	5.21
B	0.290	0.310	7.37	7.87
C	0.125	0.165	3.18	4.19
D	0.018	0.021	0.457	0.533
F	0.016	0.019	0.407	0.482
G	0.045	0.055	1.15	1.39
H	0.095	0.105	2.42	2.66
J	0.018	0.024	0.46	0.61
K	0.500	---	12.70	---
L	0.250	---	6.35	---
N	0.080	0.105	2.04	2.66
P	---	0.100	---	2.54
R	0.135	---	3.43	---

STYLE 1:
PIN 1. EMITTER 2. BASE 3. COLLECTOR

PUBLICATION ORDERING INFORMATION

NORTH AMERICA Literature Fulfillment:

Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada
Email: ONlit@hibbertco.com
Fax Response Line: 303-675-2167 or 800-344-3810 Toll Free USA/Canada
N. American Technical Support: 800-282-9855 Toll Free USA/Canada

EUROPE: LDC for ON Semiconductor - European Support
German Phone: (+1) 303-308-7140 (Mon-Fri 2:30pm to 7:00pm CET) Email: ONlit-german@hibbertco.com
French Phone: (+1) 303-308-7141 (Mon-Fri 2:00pm to 7:00pm CET) Email: ONlit-french@hibbertco.com
English Phone: (+1) 303-308-7142 (Mon-Fri 12:00pm to 5:00pm GMT)
Email: ONlit@hibbertco.com
EUROPEAN TOLL-FREE ACCESS*: 00-800-4422-3781
*Available from Germany, France, Italy, UK, Ireland

CENTRAL/SOUTH AMERICA:

Spanish Phone: 303-308-7143 (Mon-Fri 8:00am to 5:00pm MST) Email: ONlit-spanish@hibbertco.com
Toll-Free from Mexico: Dial 01-800-288-2872 for Access then Dial 866-297-9322
ASIA/PACIFIC: LDC for ON Semiconductor - Asia Support
Phone: 1-303-675-2121 (Tue-Fri 9:00am to 1:00pm, Hong Kong Time) Toll Free from Hong Kong \& Singapore: 001-800-4422-3781
Email: ONlit-asia@hibbertco.com
JAPAN: ON Semiconductor, Japan Customer Focus Center
4-32-1 Nishi-Gotanda, Shinagawa-ku, Tokyo, Japan 141-0031
Phone: 81-3-5740-2700
Email: r14525@onsemi.com
ON Semiconductor Website: http://onsemi.com
For additional information, please contact your local Sales Representative.

